# A pure Python version.
# Returns the number of bits necessary to represent an integer in binary,
# excluding the sign and leading zeros.
# Needed only for Python version < 3.0; otherwise use n.bit_length().
def bit_length(self):
s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') --> 6
def num_of_set_bits(i) :
# assert 0 <= i < 0x100000000
i = i - ((i >> 1) & 0x55555555)
i = (i & 0x33333333) + ((i >> 2) & 0x33333333)
return (((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24
def rec_product(start, stop):
"""Product of integers in range(start, stop, 2), computed recursively.
start and stop should both be odd, with start <= stop.
"""
numfactors = (stop - start) >> 1
if numfactors == 2 : return start * (start + 2)
if numfactors > 1 :
mid = (start + numfactors) | 1
return rec_product(start, mid) * rec_product(mid, stop)
if numfactors == 1 : return start
return 1
def binsplit_factorial(n):
"""Factorial of nonnegative integer n, via binary split.
"""
inner = outer = 1
for i in range(n.bit_length(), -1, -1):
inner *= rec_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
outer *= inner
return outer << (n - num_of_set_bits(n))
# Test (from math import factorial).
[[n, binsplit_factorial(n) - factorial(n)] for n in range(99)]