Search
 
SCRIPT & CODE EXAMPLE
 
CODE EXAMPLE FOR CPP

c++ count inversions merge sort

// C++ program to Count
// Inversions in an array
// using Merge Sort
#include <bits/stdc++.h>
using namespace std;
 
int _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid,
          int right);
 
/* This function sorts the
   input array and returns the
number of inversions in the array */
int mergeSort(int arr[], int array_size)
{
    int temp[array_size];
    return _mergeSort(arr, temp, 0, array_size - 1);
}
 
/* An auxiliary recursive function
  that sorts the input array and
returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
    int mid, inv_count = 0;
    if (right > left) {
        /* Divide the array into two parts and
        call _mergeSortAndCountInv()
        for each of the parts */
        mid = (right + left) / 2;
 
        /* Inversion count will be sum of
        inversions in left-part, right-part
        and number of inversions in merging */
        inv_count += _mergeSort(arr, temp, left, mid);
        inv_count += _mergeSort(arr, temp, mid + 1, right);
 
        /*Merge the two parts*/
        inv_count += merge(arr, temp, left, mid + 1, right);
    }
    return inv_count;
}
 
/* This funt merges two sorted arrays
and returns inversion count in the arrays.*/
int merge(int arr[], int temp[], int left, int mid,
          int right)
{
    int i, j, k;
    int inv_count = 0;
 
    i = left; /* i is index for left subarray*/
    j = mid; /* j is index for right subarray*/
    k = left; /* k is index for resultant merged subarray*/
    while ((i <= mid - 1) && (j <= right)) {
        if (arr[i] <= arr[j]) {
            temp[k++] = arr[i++];
        }
        else {
            temp[k++] = arr[j++];
 
            /* this is tricky -- see above
            explanation/diagram for merge()*/
            inv_count = inv_count + (mid - i);
        }
    }
 
    /* Copy the remaining elements of left subarray
(if there are any) to temp*/
    while (i <= mid - 1)
        temp[k++] = arr[i++];
 
    /* Copy the remaining elements of right subarray
       (if there are any) to temp*/
    while (j <= right)
        temp[k++] = arr[j++];
 
    /*Copy back the merged elements to original array*/
    for (i = left; i <= right; i++)
        arr[i] = temp[i];
 
    return inv_count;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 20, 6, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int ans = mergeSort(arr, n);
    cout << " Number of inversions are " << ans;
    return 0;
}
 
// This is code is contributed by rathbhupendra
Source by acervolima.com #
 
PREVIOUS NEXT
Tagged: #count #inversions #merge #sort
ADD COMMENT
Topic
Name
1+7 =