#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define llu unsigned llu
#define F first
#define S second
typedef pair<int,int> ii;
typedef pair<int,ii> iii;
typedef vector<int> vi;
vector <iii> g;
vi par;
int fnd(int x){
if (x == par[x])
return x;
par[x] = fnd(par[x]);
return par[x];
}
void onion(int a, int b){
par[fnd(a)] = par[fnd(b)];
}
int main() {
int n, m=0;
cin>>n;
int i, ans = 0;
for (i = 0; i<n; i++)
par.push_back(i);
int a,b,w;
while( cin>>a>>b>>w ){
m++;
g.push_back(iii(w, ii(a,b)));
}
sort(g.begin(), g.end());
for(i = 0; i<m; i++){
if (fnd(g[i].S.F) != fnd(g[i].S.S)){
ans += g[i].F;
onion(g[i].S.F, g[i].S.S);
}
}
cout<<ans<<endl;
return 0;
}
/*
Sample Input:
6
0 1 1
0 3 5
1 3 7
1 2 6
2 5 8
2 4 3
3 4 6
4 5 9
Sample Output:
23
*/
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// DSU data structure
// path compression + rank by union
class DSU {
int* parent;
int* rank;
public:
DSU(int n)
{
parent = new int[n];
rank = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = -1;
rank[i] = 1;
}
}
// Find function
int find(int i)
{
if (parent[i] == -1)
return i;
return parent[i] = find(parent[i]);
}
// Union function
void unite(int x, int y)
{
int s1 = find(x);
int s2 = find(y);
if (s1 != s2) {
if (rank[s1] < rank[s2]) {
parent[s1] = s2;
rank[s2] += rank[s1];
}
else {
parent[s2] = s1;
rank[s1] += rank[s2];
}
}
}
};
class Graph {
vector<vector<int> > edgelist;
int V;
public:
Graph(int V) { this->V = V; }
void addEdge(int x, int y, int w)
{
edgelist.push_back({ w, x, y });
}
void kruskals_mst()
{
// 1. Sort all edges
sort(edgelist.begin(), edgelist.end());
// Initialize the DSU
DSU s(V);
int ans = 0;
cout << "Following are the edges in the "
"constructed MST"
<< endl;
for (auto edge : edgelist) {
int w = edge[0];
int x = edge[1];
int y = edge[2];
// Take this edge in MST if it does
// not forms a cycle
if (s.find(x) != s.find(y)) {
s.unite(x, y);
ans += w;
cout << x << " -- " << y << " == " << w
<< endl;
}
}
cout << "Minimum Cost Spanning Tree: " << ans;
}
};
// Driver's code
int main()
{
/* Let us create following weighted graph
10
0--------1
| |
6| 5 |15
| |
2--------3
4 */
Graph g(4);
g.addEdge(0, 1, 10);
g.addEdge(1, 3, 15);
g.addEdge(2, 3, 4);
g.addEdge(2, 0, 6);
g.addEdge(0, 3, 5);
// Function call
g.kruskals_mst();
return 0;
}