DekGenius.com
CSS
groupby where only
>>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
... 'foo', 'bar'],
... 'B' : [1, 2, 3, 4, 5, 6],
... 'C' : [2.0, 5., 8., 1., 2., 9.]})
>>> grouped = df.groupby('A')
>>> grouped.filter(lambda x: x['B'].mean() > 3.)
A B C
1 bar 2 5.0
3 bar 4 1.0
5 bar 6 9.0
df groupby
df.groupby(by="a", dropna=False).sum()
groupby and list
In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
df
Out[1]:
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]:
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
df1
Out[3]:
a new
0 A [1, 2]
1 B [5, 5, 4]
2 C [6]
group by pandas
#calculate sum of sales grouped by month
df.groupby(df.date.dt.month)['sales'].sum()
date
1 34
2 44
3 31
Name: sales, dtype: int64
pandas groupby
# usage example
gb = df.groupby(["col1", "col2"])
counts = gb.size().to_frame(name="counts")
count
(
counts.join(gb.agg({"col3": "mean"}).rename(columns={"col3": "col3_mean"}))
.join(gb.agg({"col4": "median"}).rename(columns={"col4": "col4_median"}))
.join(gb.agg({"col4": "min"}).rename(columns={"col4": "col4_min"}))
.reset_index()
)
# to create dataframe
keys = np.array(
[
["A", "B"],
["A", "B"],
["A", "B"],
["A", "B"],
["C", "D"],
["C", "D"],
["C", "D"],
["E", "F"],
["E", "F"],
["G", "H"],
]
)
df = pd.DataFrame(
np.hstack([keys, np.random.randn(10, 4).round(2)]), columns=["col1", "col2", "col3", "col4", "col5", "col6"]
)
df[["col3", "col4", "col5", "col6"]] = df[["col3", "col4", "col5", "col6"]].astype(float)
group by dataframe
df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'})
groupby in python
# car_sales:> it is dataframe
# "Make" is column, or feature name
# operation is mean
car_sales.groupby(["Make"]).mean()
Pandas groupby
>>> emp.groupby(['dept', 'gender']).agg({'salary':'mean'}).round(-3)
groupbycolumn
# import pandas
import pandas as pd
# create dataframe
df = pd.DataFrame({'Name': ['Mukul', 'Rohan', 'Mukul', 'Manoj',
'Kamal', 'Rohan', 'Robin'],
'age': [22, 22, 21, 20, 21, 24, 20]})
# print dataframe
print(df)
# use count() and sort()
df = df.groupby(['Name'])['age'].count().reset_index(
name='Count').sort_values(['Count'], ascending=False)
# print dataframe
print(df)
pandas group by to dataframe
In [21]: g1.add_suffix('_Count').reset_index()
Out[21]:
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
groupby
spUtil.get('pps-list-modal', {title: c.data.editAllocations,
table: 'resource_allocation',
queryString: 'GROUPBYuser^resource_plan=' + c.data.sysId,
view: 'resource_portal_allocations' }).then(function(response) {
var formModal = response;
c.allocationListModal = response;
});
groupby
$users = User::select('name')->groupBy('name')->get()->toArray() ;
groupby
function groupBy(array, keyFn) {
return array.reduce((accumulator, value) => {
const key = keyFn(value);
if (!accumulator[key]) {
accumulator[key] = [value];
} else {
accumulator[key] = [value];
}
return accumulator;
}, {});
}
© 2022 Copyright:
DekGenius.com