import pandas as pd
from pyspark.sql import SparkSession
filename = <'path to file'>
spark = SparkSession.build.appName('pandasToSpark').getOrCreate()
# Assuming file is csv
pandas_df = pd.read_csv(filename)
spark_df = spark.CreateDataFrame(pandas_df)
pandas_df = spark_df.select("*").toPandas()
from pyspark.sql import SparkSession
#Create PySpark SparkSession
spark = SparkSession.builder
.master("local[1]")
.appName("SparkByExamples.com")
.getOrCreate()
#Create PySpark DataFrame from Pandas
sparkDF=spark.createDataFrame(pandasDF)
sparkDF.printSchema()
sparkDF.show()
#Outputs below schema & DataFrame
root
|-- Name: string (nullable = true)
|-- Age: long (nullable = true)
+------+---+
| Name|Age|
+------+---+
| Scott| 50|
| Jeff| 45|
|Thomas| 54|
| Ann| 34|
+------+---+
import numpy as np
import pandas as pd
# Enable Arrow-based columnar data transfers
spark.conf.set("spark.sql.execution.arrow.enabled", "true")
# Generate a pandas DataFrame
pdf = pd.DataFrame(np.random.rand(100, 3))
# Create a Spark DataFrame from a pandas DataFrame using Arrow
df = spark.createDataFrame(pdf)
pandas_df = some_df.toPandas()
some_df = sc.parallelize([
("A", "no"),
("B", "yes"),
("B", "yes"),
("B", "no")]
).toDF(["user_id", "phone_number"])
pandas_df = some_df.toPandas()
# Convert Spark DataFrame back to a Pandas DataFrame using Arrow
pandasDF = sparkDF.select("*").toPandas()