Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

Filter pandas DataFrame by substring criteria

df[df['A'].str.contains("hello")]
df[df["A"].str.contains("Hello|Britain")]
df[df['A'].str.contains("Hello|Britain")==True]
#Here is an example of regex-based search,
# find rows in `df1` which contain "foo" followed by something
df1[df1['col'].str.contains(r'foo(?!$)')]
#Sometimes regex search is not required, so specify regex=False to disable it.
#select all rows containing "foo"
df1[df1['col'].str.contains('foo', regex=False)]
#Performance wise, regex search is slower than substring search:
s.str.contains('foo|bar', na=False) #if NaN in column(s) values
#How do I apply this to multiple columns at once?
# `axis=1` tells `apply` to apply the lambda function column-wise.
df.apply(lambda col: col.str.contains('foo|bar', na=False), axis=1)
#Multiple Substring Search
df4[df4['col'].str.contains(r'foo|baz')]
#OR
terms = ['foo', 'baz']
df4[df4['col'].str.contains('|'.join(terms))]
#Sometimes, it is wise to escape your terms in case they have characters 
#that can be interpreted as regex metacharacters. If your terms contain any 
#of the following characters...[. ^ $ * + ? { } [ ]  | ( )]
import re
df4[df4['col'].str.contains('|'.join(map(re.escape, terms)))]
#re.escape has the effect of escaping the special characters so they're treated literally.
#Matching Entire Word(s)
df3 = pd.DataFrame({'col': ['the sky is blue', 'bluejay by the window']})
df3
df3[df3['col'].str.contains('blue')]
#v/s
df3[df3['col'].str.contains(r'blue')]
# Use list comprehension
df1[['foo' in x for x in df1['col']]]
#instead of
regex_pattern = r'foo(?!$)'
df1[df1['col'].str.contains(regex_pattern)]
#OR
p = re.compile(regex_pattern, flags=re.IGNORECASE)
df1[[bool(p.search(x)) for x in df1['col']]]
#If "col" has NaNs, then instead of
df1[df1['col'].str.contains(regex_pattern, na=False)]
#OR
def try_search(p, x):
    try:
        return bool(p.search(x))
    except TypeError:
        return False

p = re.compile(regex_pattern)
df1[[try_search(p, x) for x in df1['col']]]
#Numpy
df4[np.char.find(df4['col'].values.astype(str), 'foo') > -1]
#np.vectorize
f = np.vectorize(lambda haystack, needle: needle in haystack)
f(df1['col'], 'foo')
# array([ True,  True, False, False])
df1[f(df1['col'], 'foo')]
#OR
regex_pattern = r'foo(?!$)'
p = re.compile(regex_pattern)
f = np.vectorize(lambda x: pd.notna(x) and bool(p.search(x)))
df1[f(df1['col'])]
#DataFrame.query
df1.query('col.str.contains("foo")', engine='python')
'''
Recommended Usage Precedence
(First) str.contains, for its simplicity and ease handling NaNs and mixed data
List comprehensions, for its performance (especially if your data is purely strings)
np.vectorize
(Last) df.query
'''



 












Comment

PREVIOUS NEXT
Code Example
Python :: how to import date python 
Python :: flatten nested list 
Python :: pandas rename column by index 
Python :: how to make a sigmoid function in python 
Python :: Count NaN values of an DataFrame 
Python :: create an empty dataframe 
Python :: ym ip 
Python :: python check if string is in input 
Python :: python pywhatkit 
Python :: update set python 
Python :: embed discord.py 
Python :: what does ^ do python 
Python :: create close python program in puthon 
Python :: how to close windows in selenium python without quitting the browser 
Python :: create alinked list inb pyhton 
Python :: how to get the first few lines of an ndarray 3d 
Python :: inline if python 
Python :: python odbc access database 
Python :: how to read xlsx file in jupyter notebook 
Python :: what is imageTk in pil python 
Python :: plotly hide color bar 
Python :: Python Tkinter TopLevel Widget Syntax 
Python :: python push to dataframe pandas 
Python :: boto3 read excel file from s3 into pandas 
Python :: get sum of a range from user input 
Python :: python recursive sum of digit 
Python :: print list in reverse order python 
Python :: np arange shape 
Python :: csv library python convert dict to csv 
Python :: how to find the datatype of a dataframe in python 
ADD CONTENT
Topic
Content
Source link
Name
9+5 =