DekGenius.com
PYTHON
dataframe groupby multiple columns
grouped_multiple = df.groupby(['Team', 'Pos']).agg({'Age': ['mean', 'min', 'max']})
grouped_multiple.columns = ['age_mean', 'age_min', 'age_max']
grouped_multiple = grouped_multiple.reset_index()
print(grouped_multiple)
Group multiple columns in pandas
import pandas as pd
# Group multiple columns and get statistics
df = df.groupby(["store", "type"])["weekly_sales"].sum()
# Group multiple columns and multiple statistics
df = df.groupby(["store", "type"])["weekly_sales"].agg([sum, min, max])
# Display DataFrame
print(df)
group by 2 columns pandas
In [11]: df.groupby(['col5', 'col2']).size()
Out[11]:
col5 col2
1 A 1
D 3
2 B 2
3 A 3
C 1
4 B 1
5 B 2
6 B 1
dtype: int64
pandas groupby multiple columns
df['COUNTER'] =1 #initially, set that counter to 1.
group_data = df.groupby(['Alphabet','Words'])['COUNTER'].sum() #sum function
print(group_data)
pandas groupby multiple columns
#formatting
candidates_salary_by_month = candidates_df.groupby('month').agg(num_cand_month =
('num_candidates', 'sum'),
avg_sal = ('salary', 'mean')).style.format('{:.0f}')
print(candidates_salary_by_month)
group by multiple columns
Group By X means put all those with the same value for X in the one group.
Group By X, Y means put all those with the same values for both X and Y in the one group.
dataframe how to groupby apply list to multiple columns
df = df.groupby(['a','b']).apply(lambda x: [list(x['c']), list(x['d'])]).apply(pd.Series)
df.columns =['a','b','c','d']
GROUP BY With Multiple Columns
SELECT country, state, MIN(age) as min_age
FROM Persons
GROUP BY country, state;
© 2022 Copyright:
DekGenius.com