#using the insert function:
df.insert(location, column_name, list_of_values)
#example
df.insert(0, 'new_column', ['a','b','c'])
#explanation:
#put "new_column" as first column of the dataframe
#and puts 'a','b' and 'c' as values
#using array-like access:
df['new_column_name'] = value
#df stands for dataframe
#using the insert function:
df.insert(location, column_name, list_of_values)
#example
df.insert(0, 'new_column', ['a','b','c'])
#explanation:
#put "new_column" as first column of the dataframe
#and puts 'a','b' and 'c' as values
#using array access:
df['new_column_name'] = value
# Basic syntax:
pandas_dataframe['new_column_name'] = ['list', 'of', 'column', 'values']
# Note, the list of column values must have length equal to the number
# of rows in the pandas dataframe you are adding it to.
# Add column in which all rows will be value:
pandas_dataframe['new_column_name'] = value
# Where value can be a string, an int, a float, and etc
# Import pandas package
import pandas as pd
# Define a dictionary containing Students data
data = {'Name': ['Jai', 'Princi', 'Gaurav', 'Anuj'],
'Height': [5.1, 6.2, 5.1, 5.2],
'Qualification': ['Msc', 'MA', 'Msc', 'Msc']}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# Declare a list that is to be converted into a column
address = ['Delhi', 'Bangalore', 'Chennai', 'Patna']
# Using 'Address' as the column name
# and equating it to the list
df['Address'] = address
# Observe the result
print(df)
# Import pandas package
import pandas as pd
# Define a dictionary containing Students data
data = {'Name': ['Jai', 'Princi', 'Gaurav', 'Anuj'],
'Height': [5.1, 6.2, 5.1, 5.2],
'Qualification': ['Msc', 'MA', 'Msc', 'Msc']}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# Declare a list that is to be converted into a column
address = ['Delhi', 'Bangalore', 'Chennai', 'Patna']
# Using 'Address' as the column name
# and equating it to the list
df['Address'] = address
# Observe the result
df