package sort
type MaxHeap struct {
slice []Comparable
heapSize int
indices map[int]int
}
func buildMaxHeap(slice0 []int) MaxHeap {
var slice []Comparable
for _, i := range slice0 {
slice = append(slice, Int(i))
}
h := MaxHeap{}
h.Init(slice)
return h
}
func (h *MaxHeap) Init(slice []Comparable) {
if slice == nil {
slice = make([]Comparable, 0)
}
h.slice = slice
h.heapSize = len(slice)
h.indices = make(map[int]int)
h.Heapify()
}
func (h MaxHeap) Heapify() {
for i, v := range h.slice {
h.indices[v.Idx()] = i
}
for i := h.heapSize / 2; i >= 0; i-- {
h.heapifyDown(i)
}
}
func (h *MaxHeap) Pop() Comparable {
if h.heapSize == 0 {
return nil
}
i := h.slice[0]
h.heapSize--
h.slice[0] = h.slice[h.heapSize]
h.updateidx(0)
h.heapifyDown(0)
h.slice = h.slice[0:h.heapSize]
return i
}
func (h *MaxHeap) Push(i Comparable) {
h.slice = append(h.slice, i)
h.updateidx(h.heapSize)
h.heapifyUp(h.heapSize)
h.heapSize++
}
func (h MaxHeap) Size() int {
return h.heapSize
}
func (h MaxHeap) Update(i Comparable) {
h.slice[h.indices[i.Idx()]] = i
h.heapifyUp(h.indices[i.Idx()])
h.heapifyDown(h.indices[i.Idx()])
}
func (h MaxHeap) updateidx(i int) {
h.indices[h.slice[i].Idx()] = i
}
func (h MaxHeap) heapifyUp(i int) {
if i == 0 {
return
}
p := i / 2
if h.slice[i].More(h.slice[p]) {
h.slice[i], h.slice[p] = h.slice[p], h.slice[i]
h.updateidx(i)
h.updateidx(p)
h.heapifyUp(p)
}
}
func (h MaxHeap) heapifyDown(i int) {
l, r := 2*i+1, 2*i+2
max := i
if l < h.heapSize && h.slice[l].More(h.slice[max]) {
max = l
}
if r < h.heapSize && h.slice[r].More(h.slice[max]) {
max = r
}
if max != i {
h.slice[i], h.slice[max] = h.slice[max], h.slice[i]
h.updateidx(i)
h.updateidx(max)
h.heapifyDown(max)
}
}
type Comparable interface {
Idx() int
More(interface{}) bool
}
type Int int
func (a Int) More(b interface{}) bool {
return a > b.(Int)
}
func (a Int) Idx() int {
return int(a)
}
func HeapSort(slice []int) []int {
h := buildMaxHeap(slice)
for i := len(h.slice) - 1; i >= 1; i-- {
h.slice[0], h.slice[i] = h.slice[i], h.slice[0]
h.heapSize--
h.heapifyDown(0)
}
res := []int{}
for _, i := range h.slice {
res = append(res, int(i.(Int)))
}
return res
}
function heap_root(input, i) {
/* to create MAX array */
var left = 2 * i + 1;
var right = 2 * i + 2;
var max = i;
// if left child is larger than root
if (left < array_length && input[left] > input[max]) {
max = left;
}
// if right child is larger than max
if (right < array_length && input[right] > input[max]) {
max = right;
}
// if max is not root
if (max != i) {
swap(input, i, max);
heap_root(input, max);
}
}
function swap(input, index_A, index_B) {
var temp = input[index_A];
input[index_A] = input[index_B];
input[index_B] = temp;
}
function heapSort(input) {
array_length = input.length;
// Building the heap
for (var i = Math.floor(array_length / 2); i >= 0; i -= 1) {
heap_root(input, i);
}
// One by one extract and put in place
for (i = input.length - 1; i > 0; i--) {
swap(input, 0, i);
array_length--;
heap_root(input, 0);
}
}
"""
The below code provides an implementation
for the heap sort algorithm
(https://en.wikipedia.org/wiki/Heapsort).
Sorting a list via heap sort is a two-step
process:
1. In first step, transform the original list
into a heap.
2. In second step, sort the list by placing
the values in order at end of list.
Let n be the number of elements in list to sort.
Time complexity: O(nlog2(n))
Space complexity: O(1), sorting is done in place.
"""
from heapq import heapify
def heap_sort(list):
n = len(list)
# First step: turn list into a heap
heapify(list)
print(list)
# Second step: repeatedly place next
# smallest value at end of the list
for idx in range(n-1, 0, -1):
swap(0, idx, list)
bubble_down(0, idx-1, list)
def swap(idx1, idx2, list):
list[idx1], list[idx2] = list[idx2], list[idx1]
def bubble_down(current_idx, last_idx, heap):
# Method used to restore heap order property when violated
child_one_idx = current_idx * 2 + 1
while child_one_idx <= last_idx:
child_two_idx = current_idx * 2 + 2 if current_idx*2 + 2 <= last_idx else -1
if child_two_idx > -1 and heap[child_two_idx] < heap[child_one_idx]:
idx_to_swap = child_two_idx
else:
idx_to_swap = child_one_idx
if heap[idx_to_swap] < heap[current_idx]:
swap(current_idx, idx_to_swap, heap)
current_idx = idx_to_swap
child_one_idx = current_idx * 2 + 1
else:
return
list = [1, 10, 4, 3, 2]
heap_sort(list)
# Descending order
print(list) # [10, 4, 3, 2, 1]
# Ascending order
list.reverse()
print(list) # [1, 2, 3, 4, 10]