# df1 as main df and use the feild from df2 and map it into df1
df1.merge(df2,on='columnName',how='left')
df_outer = pd.merge(df1, df2, on='id', how='outer')
df_inner = pd.merge(df1, df2, on='id', how='inner')
pd.merge(product,customer,left_on='Product_name',right_on='Purchased_Product')
df1 = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
}
)
df2 = pd.DataFrame(
{
"A": ["A4", "A5", "A6", "A7"],
"B": ["B4", "B5", "B6", "B7"],
}
)
df3 = pd.DataFrame(
{
"A": ["A8", "A9", "A10", "A11"],
"B": ["B8", "B9", "B10", "B11"],
}
)
frames = [df1, df2, df3]
result = pd.concat(frames, ignore_index=True)
"""
result = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10", "A11"],
"B": ["B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9", "B10", "B11"],
},
index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
)
"""
In [99]: result = left.join(right, on=['key1', 'key2'], how='inner')
pd.merge(product,customer,how='inner',left_on=['Product_ID','Seller_City'],right_on=['Product_ID','City'])
pd.merge(product,customer,on='Product_ID')
>>> df.join(other.set_index('key'), on='key')
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 NaN
4 K4 A4 NaN
5 K5 A5 NaN
#https://pandas.pydata.org/docs/user_guide/merging.html
df.join(other.set_index('key'), on='key')
In [88]: result = left.join(right, how='inner')