Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

numpy average

import numpy as np 
a = np.arange(6).reshape(3,2) 
average = np.average(a)
Comment

numpy rolling average

import numpy as np

def moving_average(x, w):
    return np.convolve(x, np.ones(w), 'valid') / w
Comment

numpy mean

>> import numpy as np 
>> a=[1,2,3,4,5]
>> np.mean(a)
3.0
Comment

numpy mean

import numpy as np


speed = [10, 20, 30, 40]

# mean of an array - sum(speed) / len(speed)
x = np.mean(speed)
print(x)
# output 25.0

# return the median number - If there are two numbers in the middle, divide the sum of those numbers by two.
x = np.median(speed)
print(x)
# output 25.0

# return standard deviation - the lower the number return the closer the data is related
x = np.std(speed)
print(x)
# output 11.180339887498949

# return Variance of array - show how spread out the data is. The smaller the number the closer the data is related
x = np.var(speed)
print(x)
# output 125.0

# returns percentile of an array.
x = np.percentile(speed, 20)
print(f"20 percent of speed is {x} or lower")
# output 20 percent of speed is 16.0 or lower

x = np.percentile(speed, 90)
print(f"90 percent of speed is {x} or lower")
# output 90 percent of speed is 37.0 or lower

# We specify that the mean value is 5.0, and the standard deviation is .2.
# the lower the scale the closer the random numbers are to the loc number
# returns size of 100 floats in array
# normal distribution
x = np.random.normal(loc=5.0, scale=.2, size=100)
print(x)

# create array
arr = np.array([10, 20, 20, 30, 30, 20])
print("Original array:")
print(arr)

print("Mode: Most frequent value in the above array:")
print(np.bincount(arr).argmax())
# output
# Most frequent value in the above array:
# 20
# returns the least common multiple
x = np.lcm(3, 4)
print(x)
# output 12


# returns the lowest common multiple of items in array
arr = np.array([3, 6, 9])
x = np.lcm.reduce(arr)
print(x)
# 18

# returns the greatest common multiple of 2 numbers
x = np.gcd(3, 4)
print(x)
# output 1

# return the highest common multiple of items in array
arr = np.array([20, 8, 32, 36, 16])
x = np.gcd.reduce(arr)
print(x)
# output 4
Comment

PREVIOUS NEXT
Code Example
Python :: time difference between timestamps python 
Python :: Python NumPy split Function Example 
Python :: measure time 
Python :: how to install python libraries using pip 
Python :: how to count null values in pandas and return as percentage 
Python :: finding path of a module in python 
Python :: python sort multiple lists based on sorting of single list 
Python :: reset_index(drop=true) 
Python :: what does json.loads do 
Python :: python sns lable axes 
Python :: django prefetch_related vs select_related 
Python :: python panda append rows to csv python 
Python :: python check if list contains 
Python :: python dequeu 
Python :: check if element in list python 
Python :: how to create a variable in python 
Python :: python sort the values in a dictionaryi 
Python :: tkinter filedialog get directory path 
Python :: getters and setters in python 
Python :: how to open cmd at specific size using python 
Python :: iterate over classes in module python 
Python :: how to install ffmpeg python heroku 
Python :: map and filter in python 
Python :: ocaml add element to end of list 
Python :: view all columns pandas 
Python :: how to use setattr Python 
Python :: group by, aggregate multiple column -pandas 
Python :: extract nonzero array elements python 
Python :: python strip 
Python :: python last n list elements 
ADD CONTENT
Topic
Content
Source link
Name
4+8 =