np.array_equal(A,B) # test if same shape, same elements values
np.array_equiv(A,B) # test if broadcastable shape, same elements values
np.allclose(A,B,...) # test if same shape, elements have close enough values
import numpy as np
arr = np.array([1, 2, 1, 2, 3, 4, 5, 4, 6, 7])
# create a set array with no duplicates
arr = np.unique(arr)
print(arr)
# [1 2 3 4 5 6 7]
arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([3, 4, 5, 6])
# create a 1d set array without from both arrays removing duplicates
arr = np.union1d(arr1, arr2)
print(arr)
# output [1 2 3 4 5 6]
arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([3, 4, 5, 6])
# create a 1d set array where both numbers are found in both arrays
arr = np.intersect1d(arr1, arr2, assume_unique=True)
print(arr)
# output [3 4]
arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([3, 4, 5, 6])
# create a 1d set array that contained only numbers found in the first array but not the second
arr = np.setdiff1d(arr1, arr2, assume_unique=True)
print(arr)
# output [1 2]
arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([3, 4, 5, 6])
# create a 1d set array where numbers from both arrays are not in each other
arr = np.setxor1d(arr1, arr2, assume_unique=True)
print(arr)
# output [1 2 5 6]