def stream_half(col1, col2):
if col1 == 'desktop':
return col2/2
else:
return int(col2)
df['clean'] = df.apply(lambda row: stream_half(row['device'],
row['streams']), axis = 1)
#Method 1:
df["Delivery Charges"] = df[["Weight", "Package Size", "Delivery Mode"]].apply(
lambda x : calculate_rate(*x), axis=1)
#Method 2:
df["Delivery Charges"] = df.apply(
lambda x : calculate_rate(x["Weight"],
x["Package Size"], x["Delivery Mode"]), axis=1)
df['col_3'] = df.apply(lambda x: x.col_1 + x.col_2, axis=1)
>>> df = pd.DataFrame([[i] for i in range(10)], columns=['num'])
>>> df
num
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
>>> def powers(x):
>>> return x, x**2, x**3, x**4, x**5, x**6
>>> df['p1'], df['p2'], df['p3'], df['p4'], df['p5'], df['p6'] =
>>> zip(*df['num'].map(powers))
>>> df
num p1 p2 p3 p4 p5 p6
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 4 8 16 32 64
3 3 3 9 27 81 243 729
4 4 4 16 64 256 1024 4096
5 5 5 25 125 625 3125 15625
6 6 6 36 216 1296 7776 46656
7 7 7 49 343 2401 16807 117649
8 8 8 64 512 4096 32768 262144
9 9 9 81 729 6561 59049 531441
df.query('A in @mylist')
>>> print df
A B C
0 -1 0 0
1 -4 3 -1
2 -1 0 2
3 0 3 2
4 1 -1 0
>>> print df.applymap(lambda x: x>1)
A B C
0 False False False
1 False True False
2 False False True
3 False True True
4 False False False