Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

drop a column pandas

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
Comment

drop a column from dataframe

#To delete the column without having to reassign df
df.drop('column_name', axis=1, inplace=True) 
Comment

delete column pandas dataframe

df.drop(columns='column_name', inplace=True)
Comment

Drop a column pandas

df.drop('column_name', axis=1, inplace=True)
#no need to reasign df
#axis 1 is columns, 0 is rows
Comment

python code to drop columns from dataframe

# Let df be a dataframe
# Let new_df be a dataframe after dropping a column

new_df = df.drop(labels='column_name', axis=1)

# Or if you don't want to change the name of the dataframe
df = df.drop(labels='column_name', axis=1)

# Or to remove several columns
df = df.drop(['list_of_column_names'], axis=1)

# axis=0 for 'rows' and axis=1 for columns
Comment

drop columns pandas

df.drop(columns=['B', 'C'])
Comment

remove column from dataframe

df.drop('column_name', axis=1, inplace=True)
Comment

drop a column in pandas

note: df is your dataframe

df = df.drop('coloum_name',axis=1)
Comment

how to drop a column by name in pandas

>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11
Comment

python - drop a column

# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['A', 'B', 'C'], axis=1, inplace=True)
Comment

drop a column from dataframe

df = df.drop('column_name', 1)
Comment

df drop column

df = df.drop(['B', 'C'], axis=1)
Comment

Dropping columns in Pandas

# Dropping a single column
df = pd.DataFrame({"A":[3,4], "B":[5,6], "C":[7,8]})
df_new = df.drop(columns="B")

# Dropping multiple columns
df_new = df.drop(columns=["A","B"])

# Dropping columns in-place
df.drop(columns="B", inplace=True)
Comment

drop column dataframe

df.drop(columns=['Unnamed: 0'])
Comment

pandas drop column by name

df.drop(columns=['Column_Name1','Column_Name2'], axis=1, inplace=True)
Comment

drop a column from dataframe

#working with "text" syntax for the columns:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
Comment

pandas remove column

del df['column_name']
Comment

delete columns pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
Comment

remove columns from a dataframe python

df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
Comment

pandas dataframe delete column

del df['column_name']
Comment

pandas delete column by name

df = df.drop('column_name', axis=1)
Comment

how to drop a column in python

# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
Comment

delete pandas column

del df["column"]
Comment

pd df drop columns

df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
Comment

how to delete a column from a dataframe in python

del df['column']
Comment

remove a column from dataframe

del df['column_name'] #to remove a column from dataframe
Comment

drop column pandas

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
# Remove all columns between column index 1 to 3
df.drop(df.iloc[:, 1:3], inplace = True, axis = 1)
Comment

delete columns pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)
Comment

pandas drop column in dataframe

>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
Comment

drop column from dataframe

var = dataframe.drop(['col', 'col'], axis=1)
var.sum()
Comment

remove columns from a dataframe python

# Import pandas package
import pandas as pd

# create a dictionary with five fields each
data = {
'A':['A1', 'A2', 'A3', 'A4', 'A5'],
'B':['B1', 'B2', 'B3', 'B4', 'B5'],
'C':['C1', 'C2', 'C3', 'C4', 'C5'],
'D':['D1', 'D2', 'D3', 'D4', 'D5'],
'E':['E1', 'E2', 'E3', 'E4', 'E5'] }

# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
#drop the 'A' column from your dataframe df 
df.drop(['A'],axis=1,inplace=True)
df

#-->df contains 'B','C','D' and 'E'
#in this example you will change your dataframe , if you don't want to ,
#just remove the in place parameter and assign your result to an other variable 

df1=df.drop(['B'],axis=1)
#-->df1 contains 'C','D','E'
df1
Comment

delete a column in pandas

# Remove the unwanted columns
data.drop(['Country code', 'Continental region'], axis=1, inplace=True)
data.head()
Comment

drop columns in python pandas

df
	A	B	C	D
0	0	1	2	3
1	4	5	6	7
2	8	9	10	11

df.drop(['B', 'C'], axis=1, inplace=True)
   A   D
0  0   3
1  4   7
2  8  11

df.drop(columns=['B', 'C'], inplace = True)
   A   D
0  0   3
1  4   7
2  8  11
Comment

remove columns from dataframe

df.drop('col_name',1) #1 drop column / 0 drop row
Comment

drop column pandas

df.drop(['Col_1', 'Col_2'], axis = 1) # to drop full colum more general way can visulize easily

df.drop(['Col_1', 'Col_2'], axis = 1, inplace = True) # advanced : to generate df without making copies inside memory
Comment

delete column in dataframe pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
Comment

python how to drop columns from dataframe

# When you have many columns, and only want to keep a few:
# drop columns which are not needed.

# df = pandas.Dataframe()
columnsToKeep = ['column_1', 'column_13', 'column_99']
df_subset = df[columnsToKeep]

# Or:
df = df[columnsToKeep]
Comment

remove columns that start with pandas

cols = [c for c in df.columns if c.lower()[:6] != 'string']
df=df[cols]
Comment

drop dataframe columns

# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis = 1, inplace = True)

dict_1 = {'workclass_stripped':'workclass', 'education_stripped':'education', 
         'marital-status_stripped':'marital_status', 'occupation_stripped':'occupation',
         'relationship_stripped':'relationship', 'race_stripped':'race',
         'sex_stripped':'sex', 'native-country_stripped':'native-country',
         'Income_stripped':'Income'}

df.rename(columns = dict_1, inplace = True)
df
Comment

How to drop columns from pandas dataframe

df.drop(cols_to_drop, axis=1)
Comment

Python Delete column

import pandas as pd
EmployeeData=pd.DataFrame({'Name': ['ram','ravi','sham','sita','gita'],
                            'id': [101,102,103,104,105],
                        'Gender': ['M','M','M','F','F'],
                           'Age': [21,25,24,28,25]
                          })
# Priting data
print(EmployeeData)
 
# Deleting few columns
DeleteList=['Name','Gender']
EmployeeData=EmployeeData.drop(DeleteList, axis=1)
 
# Priting data
print(EmployeeData)
Comment

pd df drop columns

df.drop([0, 1]) # drop cols by index
Comment

how to delete a column in pandas dataframe

delete column from pandas data frame
Comment

drop columns pandas dataframe

df.iloc[row_start:row_end , column_start:column_end]
#or
data.drop(index=0) 
Comment

pandas drop columns

In [212]:
df = pd.DataFrame(np.random.randint(0, 2, (10, 4)), columns=list('abcd'))
df.apply(pd.Series.value_counts)
Out[212]:
   a  b  c  d
0  4  6  4  3
1  6  4  6  7
Comment

how to drop a column by name in pandas

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
...                              ['speed', 'weight', 'length']],
...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
...                   data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
...                         [250, 150], [1.5, 0.8], [320, 250],
...                         [1, 0.8], [0.3, 0.2]])
>>> df
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
        length  1.5     1.0
cow     speed   30.0    20.0
        weight  250.0   150.0
        length  1.5     0.8
falcon  speed   320.0   250.0
        weight  1.0     0.8
        length  0.3     0.2
Comment

drop columns by name

import pandas as pd

# create a sample dataframe
data = {
    'A': ['a1', 'a2', 'a3'],
    'B': ['b1', 'b2', 'b3'],
    'C': ['c1', 'c2', 'c3'],
    'D': ['d1', 'd2', 'd3']
}

df = pd.DataFrame(data)

# print the dataframe
print("Original Dataframe:
")
print(df)

# remove column C
df = df.drop('C', axis=1)

print("
After dropping C:
")
print(df)
Comment

remove a columns in pandas

DataFrame.drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')[source]
Comment

PREVIOUS NEXT
Code Example
Python :: python dont exit script after print 
Python :: get last day of month python 
Python :: how to rename columns in python 
Python :: AdaBoost in Python 
Python :: python tempfile 
Python :: flask_mail 
Python :: python find closest value in list 
Python :: python current working directory 
Python :: hotkey python 
Python :: rsplit string from last 
Python :: python django include another app url 
Python :: string to datetime python 
Python :: count values pandas 
Python :: dataframe rename column 
Python :: print a text in python 
Python :: convert a tuple into string python 
Python :: get all files in directory python 
Python :: python make dictionary based on list 
Python :: dropping nan in pandas dataframe 
Python :: install lz4 python 3 
Python :: create a role with discord.py 
Python :: discord.py send messages 
Python :: current time python 
Python :: selenium assert text on page python 
Python :: replace number with string python 
Python :: pipilika search engine 
Python :: tkinter keep window in front 
Python :: string startswith python 
Python :: take array of string in python 
Python :: pandas check if value in column is in a list 
ADD CONTENT
Topic
Content
Source link
Name
8+3 =