pandas replace values in column based on condition
In [41]:
df.loc[df['First Season'] > 1990, 'First Season'] = 1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 1960 894
1 Chicago Bears 1920 1357
2 Green Bay Packers 1921 1339
3 Miami Dolphins 1966 792
4 Baltimore Ravens 1 326
5 San Franciso 49ers 1950 1003
pandas replace data in specific columns with specific values
### replace one value ###
df["column"].replace("US","UK") # you can also use numerical values
### replace more than one value ###
df["column"].replace(["man","woman","child"],[1,2,3]) # you can also use numerical values
# man ==> 1
# woman ==> 2
# child ==> 3
# np.where function works as follows:
import numpy as np
# E.g. 1 - Set column values based on if another column is greater than or equal to 50
df['X'] = np.where(df['Y'] >= 50, 'yes', 'no')
# E.g. 2 - Replace values over 20000 with 0, otherwise keep original value
df['my_value'] = np.where(df.my_value > 20000, 0, df.my_value)
In [41]:
df.loc[df['First Season'] > 1990, 'First Season'] = 1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 1960 894
1 Chicago Bears 1920 1357
2 Green Bay Packers 1921 1339
3 Miami Dolphins 1966 792
4 Baltimore Ravens 1 326