ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
>>> ser.to_numpy()
array(['a', 'b', 'a'], dtype=object)
x = df.to_numpy()
x
# Imports
import numpy as np
import pandas as pd
df= pd.read_csv('/content/drive/MyDrive/Colab Notebooks/res_data/temp/file.txt', header = None, delim_whitespace=True, error_bad_lines=False).to_numpy()
df=df.astype(float) # convert number to float for matric calculations
print(df.shape) # .... (16, 1) initial shaope
df.resize(4, 4)
print(df)
[[ 1. 2. 3. 4.]
[ 5. 6. 7. 8.]
[ 9. 3. 5. 6.]
[ 8. 9. 79. 0.]]