df.to_csv('my_csv.csv', mode='a', header=False)
df.to_csv('my_csv.csv', mode='a', header=False)
# append with mode = 'a'
# no header for existing files this way
output_path='my_csv.csv'
df.to_csv(output_path, mode='a', header=not os.path.exists(output_path))
import os
# if file does not exist write header
if not os.path.isfile('filename.csv'):
df.to_csv('filename.csv', header='column_names')
else: # else it exists so append without writing the header
df.to_csv('filename.csv', mode='a', header=False)
import pandas as pd
import glob
path = r'C:DRODCL_rawdata_files' # use your path
all_files = glob.glob(path + "/*.csv")
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True)
# Needed packages
import glob
import pandas as pd
# Import all csv files
files = glob.glob("Path/*.csv")
# Concatenate them into one Dataframe
df = pd.DataFrame()
for f in files:
csv = pd.read_csv(f)
df = df.append(csv)
print(df)
df.to_csv('test_scores.csv', mode='a', index=False, header=False)