df = df[df['EPS'].notna()]
#return a subset of the dataframe where the column name value == NaN
df.loc[df['column name'].isnull() == True]
import numpy as np
import pandas as pd
val = np.nan
print(pd.isnull(val))
# True
import pandas as pd
df = pd.read_csv("file path.csv")
null=pd.DataFrame(df.isnull().sum(),columns=["Null Values count"]) # gets a dataset with all of the columns and the number of Null values in it
null["Null values percentage"]=(df.isna().sum()/len(df)*100) # adds a column with the % of the Null out of all of the column
null = null[null["Null values percentage"] > 0] # keep only the ones that has Null values
null.style.background_gradient() # prints it in a pretty way