df = df.dropna(axis = 0, how = 'all')
df.dropna(axis = 0, how = 'all', inplace = True)
df.dropna(subset=['EPS'], how='all', inplace=True)
df.dropna() #drop all rows that have any NaN values
df.dropna(how='all')
#remove in dataframe but no in the file
df = df[df['column'].notna()]
#remove in dataframe and in the file
df.dropna(subset=['EPS'], how='all', inplace=True)
df = df.dropna(subset=['colA', 'colC'])
df.dropna(subset=['col1', 'col2', 'col3', 'col4', 'col5', 'col6'], how='all', inplace=True)