# Quick Examples
#Using drop() to delete rows based on column value
df.drop(df[df['Fee'] >= 24000].index, inplace = True)
# Remove rows
df2 = df[df.Fee >= 24000]
# If you have space in column name
# Specify column name with in single quotes
df2 = df[df['column name']]
# Using loc
df2 = df.loc[df["Fee"] >= 24000 ]
# Delect rows based on multiple column value
df2 = df[ (df['Fee'] >= 22000) & (df['Discount'] == 2300)]
# Drop rows with None/NaN
df2 = df[df.Discount.notnull()]
print (df['S'] != df['T'])
0 False
1 True
2 True
3 True
4 False
5 True
6 True
7 True
8 False
dtype: bool
df = df[df['S'] != df['T']]
print (df)
S T W U
1 A B 0 Undirected
2 A C 1 Undirected
3 B A 0 Undirected
5 B C 1 Undirected
6 C A 1 Undirected
7 C B 1 Undirected