#To convert a series to a dataframe simply apply the to_frame() method
#to the series
s.to_frame()
>>> s = pd.Series(["a", "b", "c"],
... name="vals")
>>> s.to_frame()
vals
0 a
1 b
2 c
import pandas as pd
data = {'First_Name': ['Jeff','Tina','Ben','Maria','Rob']}
df = pd.DataFrame(data, columns = ['First_Name'])
print(df)
# First_Name
#0 Jeff
#1 Tina
#2 Ben
#3 Maria
#4 Rob
print(type(df))
# <class 'pandas.core.frame.DataFrame'>
df = df.squeeze() # <- Converts to a pandas series
print(df)
#0 Jeff
#1 Tina
#2 Ben
#3 Maria
#4 Rob
#Name: First_Name, dtype: object
print(type(df))
# <class 'pandas.core.series.Series'>
df = pd.DataFrame([s])
print (df)
product_id_y count
6159402 1159730 1
df.squeeze() # converts to series
# OR
# When loading a file
pd.read_csv("df.csv", index_col="col1", squeeze=True)
series = df.squeeze() # Convert df to series
pd.DataFrame({'email':sf.index, 'list':sf.values})
In [119]:
common = df1.merge(df2,on=['col1','col2'])
print(common)
df1[(~df1.col1.isin(common.col1))&(~df1.col2.isin(common.col2))]
col1 col2
0 1 10
1 2 11
2 3 12
Out[119]:
col1 col2
3 4 13
4 5 14