from sklearn import preprocessing
normalizer = preprocessing.Normalizer().fit(X_train)
X_train = normalizer.transform(X_train)
X_test = normalizer.transform(X_test)
Method to normalize data so that data redundency is reduced
Code Example |
---|
Python :: color reverse |
Python :: python : a counter |
Python :: get last item on list |
Python :: turn a query set into a list django |
Python :: pairs with specific difference |
Python :: Use operator in python list |
Python :: flow of control in python |
Python :: python turtle tutorial |
Python :: scrapy with selenium |
Python :: for schleife python |
Python :: TRY |
Python :: python struct |
Python :: what does abs do in python |
Python :: celery periodic tasks |
Python :: sorted lambda |
Python :: pyhon sort a list of tuples |
Python :: how to find ascii value by python |
Python :: python using set |
Python :: dfs algorithm |
Python :: python pytest vs unittest |
Python :: sum python |
Python :: type() in python |
Python :: crud python |
Python :: how to make loop python |
Python :: create anaconda env |
Python :: print column name and index dataframe python |
Python :: is enumerate python lazy |
Python :: python all available paths |
Python :: python string: index error |
Python :: python russian roulette |