import tensorflow as tf
mnist = tf.keras.datasets.mnist
(xTrain, yTrain), (xTest, yTest) = mnist.load_data()
xTrain, xTest = xTrain / 255, xTest / 255
network = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation="sigmoid")
])
predictions = network(xTrain[:1]).numpy()
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss(yTrain[:1], predictions).numpy()
network.compile("adam", loss, ["accuracy"])
network.fit(xTrain, yTrain, epochs=5)
network.evaluate(xTest, yTest, verbose=2)