// A Java Program to detect cycle in an undirected graph
import java.io.*;
import java.util.*;
// This class represents a
// directed graph using adjacency list
// representation
class Graph {
// No. of vertices
private int V;
// Adjacency List Representation
private LinkedList<Integer> adj[];
// Constructor
Graph(int v)
{
V = v;
adj = new LinkedList[v];
for (int i = 0; i < v; ++i)
adj[i] = new LinkedList();
}
// Function to add an edge
// into the graph
void addEdge(int v, int w)
{
adj[v].add(w);
adj[w].add(v);
}
// A recursive function that
// uses visited[] and parent to detect
// cycle in subgraph reachable
// from vertex v.
Boolean isCyclicUtil(int v, Boolean visited[],
int parent)
{
// Mark the current node as visited
visited[v] = true;
Integer i;
// Recur for all the vertices
// adjacent to this vertex
Iterator<Integer> it = adj[v].iterator();
while (it.hasNext()) {
i = it.next();
// If an adjacent is not
// visited, then recur for that
// adjacent
if (!visited[i]) {
if (isCyclicUtil(i, visited, v))
return true;
}
// If an adjacent is visited
// and not parent of current
// vertex, then there is a cycle.
else if (i != parent)
return true;
}
return false;
}
// Returns true if the graph
// contains a cycle, else false.
Boolean isCyclic()
{
// Mark all the vertices as
// not visited and not part of
// recursion stack
Boolean visited[] = new Boolean[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Call the recursive helper
// function to detect cycle in
// different DFS trees
for (int u = 0; u < V; u++) {
// Don't recur for u if already visited
if (!visited[u])
if (isCyclicUtil(u, visited, -1))
return true;
}
return false;
}
// Driver method to test above methods
public static void main(String args[])
{
// Create a graph given
// in the above diagram
Graph g1 = new Graph(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
if (g1.isCyclic())
System.out.println("Graph
contains cycle");
else
System.out.println("Graph
doesn't contains cycle");
Graph g2 = new Graph(3);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
if (g2.isCyclic())
System.out.println("Graph
contains cycle");
else
System.out.println("Graph
doesn't contains cycle");
}
}
// This code is contributed by Aakash Hasija
# Python Program to detect cycle in an undirected graph
from collections import defaultdict
# This class represents a undirected
# graph using adjacency list representation
class Graph:
def __init__(self, vertices):
# No. of vertices
self.V = vertices # No. of vertices
# Default dictionary to store graph
self.graph = defaultdict(list)
# Function to add an edge to graph
def addEdge(self, v, w):
# Add w to v_s list
self.graph[v].append(w)
# Add v to w_s list
self.graph[w].append(v)
# A recursive function that uses
# visited[] and parent to detect
# cycle in subgraph reachable from vertex v.
def isCyclicUtil(self, v, visited, parent):
# Mark the current node as visited
visited[v] = True
# Recur for all the vertices
# adjacent to this vertex
for i in self.graph[v]:
# If the node is not
# visited then recurse on it
if visited[i] == False:
if(self.isCyclicUtil(i, visited, v)):
return True
# If an adjacent vertex is
# visited and not parent
# of current vertex,
# then there is a cycle
elif parent != i:
return True
return False
# Returns true if the graph
# contains a cycle, else false.
def isCyclic(self):
# Mark all the vertices
# as not visited
visited = [False]*(self.V)
# Call the recursive helper
# function to detect cycle in different
# DFS trees
for i in range(self.V):
# Don't recur for u if it
# is already visited
if visited[i] == False:
if(self.isCyclicUtil
(i, visited, -1)) == True:
return True
return False
# Create a graph given in the above diagram
g = Graph(5)
g.addEdge(1, 0)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(0, 3)
g.addEdge(3, 4)
if g.isCyclic():
print("Graph contains cycle")
else:
print("Graph does not contain cycle ")
g1 = Graph(3)
g1.addEdge(0, 1)
g1.addEdge(1, 2)
if g1.isCyclic():
print("Graph contains cycle")
else:
print("Graph does not contain cycle ")
# This code is contributed by Neelam Yadav