DekGenius.com
PYTHON
column dataframe to int
df[[column_name]].astype(int)
convert column to numeric pandas
# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame
# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)
convert a pandas column to int
# convert Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert entire Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
python dataframe column string to integer python
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
df[[column_name]].astype(int)
column to int pandas
# convert entire Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert Series
my_series = pd.to_numeric(my_series)
#
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert Series
my_series = pd.to_numeric(my_series)
#
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
convert a column to int pandas
df[column_name]= pd.to_numeric(df[column_name],errors='coerce')
column to int pandas
# convert Series
my_series = pd.to_numeric(my_series)
#
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert entire Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert entire Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert entire Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert Series
my_series = pd.to_numeric(my_series)
#
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert entire Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert Series
my_series = pd.to_numeric(my_series)
#
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert Series
my_series = pd.to_numeric(my_series)
#
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
column to int pandas
# convert entire Series
my_series = pd.to_numeric(my_series)
# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])
how to convert pandas price column to integer
# car_sales is my data, and price is its feature name
# anything that must be replaced is placed in square breackets in repalce
# where square brackets allow us to replace multiple characters
# it will replace thoses characters with empty string
# finally using dtypes, i am changing feature datatype to float
# in my case it is float, u may choose anything u want for example int
car_sales["Price"] = car_sales["Price"].str.replace("[$,]","").astype(float)
pandas convert column to nullable integers dtype
df['myCol'] = df['myCol'].astype('Int64')
how to convert a pandas column price to integer?
car_sales["Price"] = car_sales["Price"].str.replace('[$,]|.d*', '').astype(int)
© 2022 Copyright:
DekGenius.com