from matplotlib import pyplot as plt
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel('some numbers')
plt.show()
import matplotlib.pyplot as plt
from matplotlib import pyplot as plt
import matplotlib.pyplot as plt1
print(dir(plt) == dir(plt1))
True
import matplotlib.pyplot as plt
x=[0,10,20,30,60,90]
y=[-4.39,-4.69,-4.99,-5.30,-6.21,-7.13]
fig=plt.figure()
ax=fig.add_axes([0,0,1,1]) #grand
plt.plot(x,y)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 5, 0.1);
y = np.sin(x)
plt.plot(x, y)
import matplotlib.pyplot as plt
import numpy as np
# Generate pseudo-random numbers:
np.random.seed(0)
# Sampling interval:
dt = 0.01
# Sampling Frequency:
Fs = 1 / dt # ex[;aom Fs]
# Generate noise:
t = np.arange(0, 10, dt)
res = np.random.randn(len(t))
r = np.exp(-t / 0.05)
# Convolve 2 signals (functions):
conv_res = np.convolve(res, r)*dt
conv_res = conv_res[:len(t)]
s = 0.5 * np.sin(1.5 * np.pi * t) + conv_res
# Create the plot:
fig, (ax) = plt.subplots()
ax.plot(t, s)
# Function plots phase spectrum:
ax.phase_spectrum(s, Fs = Fs)
plt.title(“Phase Spectrum Plot”)
plt.show()
from matplotlib import pyplot as plt
df.plot()
import matplotlib
plt.plot([1, 2, 3, 4], [1, 4, 9, 16]) # plot x against y