# Visualization is the easiest way to have an inference about the overall data and the outliers.
n = 1
plt.figure(figsize=(18,15))
for column in df.describe().columns:
plt.subplot(5, 4, n)
n = n+1
sns.boxplot(df[column])
plt.tight_layout()
import numpy as np; np.random.seed(42)
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame(data = np.random.random(size=(4,4)), columns = ['A','B','C','D'])
sns.boxplot(x="variable", y="value", data=pd.melt(df))
plt.show()