Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

np sum

>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])
>>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1)
array([1., 5.])
Comment

np sum

np.sum([12, 10], initial=0)
Comment

numpy sum

import numpy as np


speed = [10, 20, 30, 40]

# mean of an array - sum(speed) / len(speed)
x = np.mean(speed)
print(x)
# output 25.0

# return the median number - If there are two numbers in the middle, divide the sum of those numbers by two.
x = np.median(speed)
print(x)
# output 25.0

# return standard deviation - the lower the number return the closer the data is related
x = np.std(speed)
print(x)
# output 11.180339887498949

# return Variance of array - show how spread out the data is. The smaller the number the closer the data is related
x = np.var(speed)
print(x)
# output 125.0

# returns percentile of an array.
x = np.percentile(speed, 20)
print(f"20 percent of speed is {x} or lower")
# output 20 percent of speed is 16.0 or lower

x = np.percentile(speed, 90)
print(f"90 percent of speed is {x} or lower")
# output 90 percent of speed is 37.0 or lower

# We specify that the mean value is 5.0, and the standard deviation is .2.
# the lower the scale the closer the random numbers are to the loc number
# returns size of 100 floats in array
# normal distribution
x = np.random.normal(loc=5.0, scale=.2, size=100)
print(x)

# create array
arr = np.array([10, 20, 20, 30, 30, 20])
print("Original array:")
print(arr)

print("Mode: Most frequent value in the above array:")
print(np.bincount(arr).argmax())
# output
# Most frequent value in the above array:
# 20
# returns the least common multiple
x = np.lcm(3, 4)
print(x)
# output 12


# returns the lowest common multiple of items in array
arr = np.array([3, 6, 9])
x = np.lcm.reduce(arr)
print(x)
# 18

# returns the greatest common multiple of 2 numbers
x = np.gcd(3, 4)
print(x)
# output 1

# return the highest common multiple of items in array
arr = np.array([20, 8, 32, 36, 16])
x = np.gcd.reduce(arr)
print(x)
# output 4
Comment

python np.sum

npsum = np.sum(array)
Comment

PREVIOUS NEXT
Code Example
Python :: pandas apply output multiple columns 
Python :: querydict instance is immutable 
Python :: how to take space separated input in python 
Python :: absolute value in python 
Python :: python get array length 
Python :: how to know if the space button has been clicked in python pygame 
Python :: train-test split code in pandas 
Python :: heroku requirements.txt python 
Python :: How do I merge two dictionaries in a single expression (taking union of dictionaries)? 
Python :: cv2 rotate image 
Python :: tkinter icon 
Python :: how to add a file to an email in python 
Python :: parentheses in python 
Python :: numpy diff 
Python :: model.fit(X_train, Y_train, batch_size=80, epochs=2, validation_split=0.1) 
Python :: python add one month to a date 
Python :: how to clear the list in python 
Python :: how to calculate fibonacci numbers in python 
Python :: SciPy Convex Hull 
Python :: # remove punctuation 
Python :: keyword python 
Python :: oserror: invalid cross-device link 
Python :: convert generator to list python 
Python :: modulo python 
Python :: how to swap two variables without using third variable and default python functionality 
Python :: remove na python 
Python :: convert negative to positive in python 
Python :: python change directory to previous 
Python :: convert pandas.core.indexes.numeric.int64index to list 
Python :: escape sequence in python 
ADD CONTENT
Topic
Content
Source link
Name
9+5 =