DekGenius.com
PYTHON
drop a column pandas
df.drop(['column_1', 'Column_2'], axis = 1, inplace = True)
drop a column from dataframe
#To delete the column without having to reassign df
df.drop('column_name', axis=1, inplace=True)
Drop a column pandas
df.drop('column_name', axis=1, inplace=True)
#no need to reasign df
#axis 1 is columns, 0 is rows
drop columns pandas
df.drop(columns=['B', 'C'])
drop a column in pandas
note: df is your dataframe
df = df.drop('coloum_name',axis=1)
python - drop a column
# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['A', 'B', 'C'], axis=1, inplace=True)
drop a column from dataframe
df = df.drop('column_name', 1)
df drop column
df = df.drop(['B', 'C'], axis=1)
drop column dataframe
df.drop(columns=['Unnamed: 0'])
drop a column from dataframe
#working with "text" syntax for the columns:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
drop a column in pandas
df = df.drop(df.columns[[0, 1, 3]], axis=1) # df.columns is zero-based pd.Index
padnas drop column
df.drop(columns=['col1', 'col2'])
pd df drop columns
df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
drop column pandas
df.drop(['column_1', 'Column_2'], axis = 1, inplace = True)
# Remove all columns between column index 1 to 3
df.drop(df.iloc[:, 1:3], inplace = True, axis = 1)
pandas drop column in dataframe
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
drop column from dataframe
var = dataframe.drop(['col', 'col'], axis=1)
var.sum()
drop column
ALTER TABLE <TableName>
DROP COLUMN <ColumnName>;
drop columns in python pandas
df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
df.drop(['B', 'C'], axis=1, inplace=True)
A D
0 0 3
1 4 7
2 8 11
df.drop(columns=['B', 'C'], inplace = True)
A D
0 0 3
1 4 7
2 8 11
drop column pandas
df.drop(['Col_1', 'Col_2'], axis = 1) # to drop full colum more general way can visulize easily
df.drop(['Col_1', 'Col_2'], axis = 1, inplace = True) # advanced : to generate df without making copies inside memory
drop column
result.drop(['web-scraper-start-url', 'jfy', 'jfy-href'], axis=1, inplace=True)
drop dataframe columns
# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis = 1, inplace = True)
dict_1 = {'workclass_stripped':'workclass', 'education_stripped':'education',
'marital-status_stripped':'marital_status', 'occupation_stripped':'occupation',
'relationship_stripped':'relationship', 'race_stripped':'race',
'sex_stripped':'sex', 'native-country_stripped':'native-country',
'Income_stripped':'Income'}
df.rename(columns = dict_1, inplace = True)
df
pd df drop columns
df.drop([0, 1]) # drop cols by index
drop columns pandas dataframe
df.iloc[row_start:row_end , column_start:column_end]
#or
data.drop(index=0)
pandas drop columns
In [212]:
df = pd.DataFrame(np.random.randint(0, 2, (10, 4)), columns=list('abcd'))
df.apply(pd.Series.value_counts)
Out[212]:
a b c d
0 4 6 4 3
1 6 4 6 7
drop columns
>>> df.drop(index='cow', columns='small')
big
lama speed 45.0
weight 200.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
droping columns
ri.drop('county_name',
axis='columns', inplace=True)
© 2022 Copyright:
DekGenius.com