DekGenius.com
PYTHON
pandas groupby values in list
pd. DataFrame( { 'a' : [ 'A' , 'A' , 'B' , 'B' , 'B' , 'C' ] , 'b' : [ 1 , 2 , 5 , 5 , 4 , 6 ] } )
df. groupby( 'a' ) [ 'b' ] . apply ( list )
Out:
a
A [ 1 , 2 ]
B [ 5 , 5 , 4 ]
C [ 6 ]
Name: b, dtype: object
df groupby
df. groupby( by= "a" , dropna= False ) . sum ( )
groupby and list
In [ 1 ] : df = pd. DataFrame( { 'a' : [ 'A' , 'A' , 'B' , 'B' , 'B' , 'C' ] , 'b' : [ 1 , 2 , 5 , 5 , 4 , 6 ] } )
df
Out[ 1 ] :
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [ 2 ] : df. groupby( 'a' ) [ 'b' ] . apply ( list )
Out[ 2 ] :
a
A [ 1 , 2 ]
B [ 5 , 5 , 4 ]
C [ 6 ]
Name: b, dtype: object
In [ 3 ] : df1 = df. groupby( 'a' ) [ 'b' ] . apply ( list ) . reset_index( name= 'new' )
df1
Out[ 3 ] :
a new
0 A [ 1 , 2 ]
1 B [ 5 , 5 , 4 ]
2 C [ 6 ]
group by pandas
df. groupby( df. date. dt. month) [ 'sales' ] . sum ( )
date
1 34
2 44
3 31
Name: sales, dtype: int64
pandas groupby
gb = df. groupby( [ "col1" , "col2" ] )
counts = gb. size( ) . to_frame( name= "counts" )
count
(
counts. join( gb. agg( { "col3" : "mean" } ) . rename( columns= { "col3" : "col3_mean" } ) )
. join( gb. agg( { "col4" : "median" } ) . rename( columns= { "col4" : "col4_median" } ) )
. join( gb. agg( { "col4" : "min" } ) . rename( columns= { "col4" : "col4_min" } ) )
. reset_index( )
)
keys = np. array(
[
[ "A" , "B" ] ,
[ "A" , "B" ] ,
[ "A" , "B" ] ,
[ "A" , "B" ] ,
[ "C" , "D" ] ,
[ "C" , "D" ] ,
[ "C" , "D" ] ,
[ "E" , "F" ] ,
[ "E" , "F" ] ,
[ "G" , "H" ] ,
]
)
df = pd. DataFrame(
np. hstack( [ keys, np. random. randn( 10 , 4 ) . round ( 2 ) ] ) , columns= [ "col1" , "col2" , "col3" , "col4" , "col5" , "col6" ]
)
df[ [ "col3" , "col4" , "col5" , "col6" ] ] = df[ [ "col3" , "col4" , "col5" , "col6" ] ] . astype( float )
group by dataframe
df. groupby( 'A' ) . agg( { 'B' : [ 'min' , 'max' ] , 'C' : 'sum' } )
groupby in python
car_sales. groupby( [ "Make" ] ) . mean( )
Pandas groupby
>> > emp. groupby( [ 'dept' , 'gender' ] ) . agg( { 'salary' : 'mean' } ) . round ( - 3 )
pandas group by to dataframe
In [ 21 ] : g1. add_suffix( '_Count' ) . reset_index( )
Out[ 21 ] :
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
groupby
spUtil. get( 'pps-list-modal' , { title: c. data. editAllocations,
table: 'resource_allocation' ,
queryString: 'GROUPBYuser^resource_plan=' + c. data. sysId,
view: 'resource_portal_allocations' } ) . then( function( response) {
var formModal = response;
c. allocationListModal = response;
} ) ;
groupby
$users = User: : select( 'name' ) - > groupBy( 'name' ) - > get( ) - > toArray( ) ;
groupby
function groupBy( array, keyFn) {
return array. reduce ( ( accumulator, value) = > {
const key = keyFn( value) ;
if ( !accumulator[ key] ) {
accumulator[ key] = [ value] ;
} else {
accumulator[ key] = [ value] ;
}
return accumulator;
} , { } ) ;
}
python group by
df. groupby( 'group' ) . assign( mean_var1 = lambda x: np. mean( x. var1)
© 2022 Copyright:
DekGenius.com