Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

pandas merge multiple dataframes

import pandas as pd
from functools import reduce

# compile the list of dataframes you want to merge
data_frames = [df1, df2, df3]
df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['key_col'],
                                            how='outer'), data_frames)
Comment

pandas concat / merge two dataframe within one dataframe


In [9]: result = pd.concat([df1, df4], axis=1)
Comment

how to merge more than 2 dataframes in python

df = pd.concat( [df1,df2,df3], ignore_index=True )
Comment

Merge multiple dataframs

# compile the list of dataframes you want to merge
data_frames = [df1, df2, df3]

df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['DATE'],
                                            how='outer'), data_frames)

# if you want to fill the values that don't exist in the lines of merged dataframe simply fill with required strings as

df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['DATE'],
                                            how='outer'), data_frames).fillna('void')
Comment

merge 2 dataframes in python

df_cd = pd.merge(df_SN7577i_c, df_SN7577i_d, how='inner', left_on = 'Id', right_on = 'Id')
Comment

Merge multiple dataframs

from functools import reduce

Name of a column in all dataframes is 'DATE'

df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['DATE'],
                                            how='outer'), data_frames)

# if you want to fill the values that don't exist in the lines of merged dataframe simply fill with required strings as

df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['DATE'],
                                            how='outer'), data_frames).fillna('void')
Comment

Merge multiple dataframs

from functools import reduce
import pandas as pd

dfs = [df1, df2, df3, ...]
nan_value = 0

# solution 1 (fast)
result_1 = pd.concat(dfs, join='outer', axis=1).fillna(nan_value)

# solution 2
result_2 = reduce(lambda df_left,df_right: pd.merge(df_left, df_right, 
                                              left_index=True, right_index=True, 
                                              how='outer'), 
                  dfs).fillna(nan_value)
Comment

Merge multiple dataframs

df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['DATE'],
                                            how='outer'), data_frames)

# if you want to fill the values that don't exist in the lines of merged dataframe simply fill with required strings as

df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['DATE'],
                                            how='outer'), data_frames).fillna('void')
Comment

PREVIOUS NEXT
Code Example
Python :: how to get what type of file in python 
Python :: python list distinct 
Python :: scipy correlation 
Python :: fastapi upload image PIL 
Python :: read csv and set column name in pandas 
Python :: Concatenate strings using Pandas groupby 
Python :: run 2 loops simultaneously python 
Python :: extract link from text python 
Python :: tkinter gui grid and frame 
Python :: decrypt python code 
Python :: sys get current pythonpath 
Python :: text to pandas 
Python :: how to pick a random number in a list python 
Python :: get rid of n in string python 
Python :: python open pickle file 
Python :: python clock 
Python :: python replace letters in string 
Python :: plt show 2 images 
Python :: converting datetime object format to datetime format python 
Python :: how to pick a random english word from a list 
Python :: getting pi in python 
Python :: does break stop all loops 
Python :: django validator min max value 
Python :: pandas change column name from a dictionary 
Python :: python code to open windows command prompt 
Python :: how to set background color of an image to transparent in pygame 
Python :: google colab how to upload a folder 
Python :: how to add up a list in python 
Python :: making variable if it is none python 
Python :: full screen jupyter notebook 
ADD CONTENT
Topic
Content
Source link
Name
1+1 =