# Let df be a dataframe# Let new_df be a dataframe after dropping a column
new_df = df.drop(labels='column_name', axis=1)# Or if you don't want to change the name of the dataframe
df = df.drop(labels='column_name', axis=1)# Or to remove several columns
df = df.drop(['list_of_column_names'], axis=1)# axis=0 for 'rows' and axis=1 for columns
# axis=1 tells Python that we want to apply function on columns instead of rows# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['A','B','C'], axis=1, inplace=True)
# axis=1 tells Python that we want to apply function on columns instead of rows# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['column_1','Column_2'], axis =1, inplace =True)
df.drop(['column_1','Column_2'], axis =1, inplace =True)# Remove all columns between column index 1 to 3
df.drop(df.iloc[:,1:3], inplace =True, axis =1)
df.drop(['Col_1','Col_2'], axis =1)# to drop full colum more general way can visulize easily
df.drop(['Col_1','Col_2'], axis =1, inplace =True)# advanced : to generate df without making copies inside memory
# When you have many columns, and only want to keep a few:# drop columns which are not needed.# df = pandas.Dataframe()
columnsToKeep =['column_1','column_13','column_99']
df_subset = df[columnsToKeep]# Or:
df = df[columnsToKeep]
# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis =1, inplace =True)
dict_1 ={'workclass_stripped':'workclass','education_stripped':'education','marital-status_stripped':'marital_status','occupation_stripped':'occupation','relationship_stripped':'relationship','race_stripped':'race','sex_stripped':'sex','native-country_stripped':'native-country','Income_stripped':'Income'}
df.rename(columns = dict_1, inplace =True)
df
# Let df be a dataframe# Let new_df be a dataframe after dropping a column
new_df = df.drop(labels='column_name', axis=1)# Or if you don't want to change the name of the dataframe
df = df.drop(labels='column_name', axis=1)# Or to remove several columns
df = df.drop(['list_of_column_names'], axis=1)# axis=0 for 'rows' and axis=1 for columns
# axis=1 tells Python that we want to apply function on columns instead of rows# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['A','B','C'], axis=1, inplace=True)
# axis=1 tells Python that we want to apply function on columns instead of rows# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['column_1','Column_2'], axis =1, inplace =True)
df.drop(['column_1','Column_2'], axis =1, inplace =True)# Remove all columns between column index 1 to 3
df.drop(df.iloc[:,1:3], inplace =True, axis =1)
df.drop(['Col_1','Col_2'], axis =1)# to drop full colum more general way can visulize easily
df.drop(['Col_1','Col_2'], axis =1, inplace =True)# advanced : to generate df without making copies inside memory
# When you have many columns, and only want to keep a few:# drop columns which are not needed.# df = pandas.Dataframe()
columnsToKeep =['column_1','column_13','column_99']
df_subset = df[columnsToKeep]# Or:
df = df[columnsToKeep]
# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis =1, inplace =True)
dict_1 ={'workclass_stripped':'workclass','education_stripped':'education','marital-status_stripped':'marital_status','occupation_stripped':'occupation','relationship_stripped':'relationship','race_stripped':'race','sex_stripped':'sex','native-country_stripped':'native-country','Income_stripped':'Income'}
df.rename(columns = dict_1, inplace =True)
df