Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

confusion matrix python

from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d', cbar=False)
Comment

sklearn plot confusion matrix

import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, plot_confusion_matrix

clf = # define your classifier (Decision Tree, Random Forest etc.)
clf.fit(X, y) # fit your classifier

# make predictions with your classifier
y_pred = clf.predict(X)         
# optional: get true negative (tn), false positive (fp)
# false negative (fn) and true positive (tp) from confusion matrix
M = confusion_matrix(y, y_pred)
tn, fp, fn, tp = M.ravel() 
# plotting the confusion matrix
plot_confusion_matrix(clf, X, y)
plt.show()
Comment

python plot_confusion_matrix

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(test_Y, predictions_dt)
cm
# after creating the confusion matrix, for better understaning plot the cm.
import seaborn as sn
plt.figure(figsize = (10,8))
# were 'cmap' is used to set the accent colour
sn.heatmap(cm, annot=True, cmap= 'flare',  fmt='d', cbar=True)
plt.xlabel('Predicted_Label')
plt.ylabel('Truth_Label')
plt.title('Confusion Matrix - Decision Tree')
Comment

confusion matrix python

By definition, entry i,j in a confusion matrix is the number of 
observations actually in group i, but predicted to be in group j. 
Scikit-Learn provides a confusion_matrix function:

from sklearn.metrics import confusion_matrix
y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
confusion_matrix(y_actu, y_pred)
# Output
# array([[3, 0, 0],
#        [0, 1, 2],
#        [2, 1, 3]], dtype=int64)
Comment

confusion matrix python

from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report, confusion_matrix

print(confusion_matrix(y_test, y_pred_test.round()))
print(classification_report(y_test, y_pred_test.round()))

# Output:
[[99450   250]
 [ 4165 11192]]
              precision    recall  f1-score   support

           0       0.96      1.00      0.98     99700
           1       0.98      0.73      0.84     15357

    accuracy                           0.96    115057
   macro avg       0.97      0.86      0.91    115057
weighted avg       0.96      0.96      0.96    115057
Comment

sklearn plot confusion matrix

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import  plot_confusion_matrix
clf = LogisticRegression()
clf.fit(X_train,y_train)
disp = plot_confusion_matrix(clf,X_test,y_test,cmap="Blues",values_format='.3g')
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
Comment

plot confusion matrix scikit learn

from sklearn import metrics
metrics.ConfusionMatrixDisplay.from_predictions(true_y, predicted_y).plot()
Comment

how to plot confusion matrix

import seaborn as sns
from sklearn.metrics import confusion_matrix
# y_test  : actual labels or target
# y_preds : predicted labels or target
sns.heatmap(confusion_matrix(y_test, y_preds),annot=True);
Comment

how to get confusion matrix in python

from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_test, y_pred)
Comment

plotting confusion matrix

from sklearn.metrics import confusion_matrix
matrix_confusion = confusion_matrix(y_test, y_pred)
sns.heatmap(matrix_confusion, square=True, annot=True, cmap='Blues', fmt='d', cbar=False
Comment

confusion matrix python

df_confusion = pd.crosstab(y_actu, y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True)
Comment

Confusion matrix

import seaborn as sns
from sklearn.metrics import confusion_matrix as cm
conf_mat = cm(y_true, y_pred)
sns.heatmap(conf_mat, annot=True)
Comment

confusion matrix code

cm = confusion_matrix(y_test, clf_pred)
print(cm)
print(accuracy_score(y_test, clf_pred))
plt.figure(figsize=(10,5))
sns.heatmap(cm, annot=True, fmt="d", linewidths=.5)
plt.show()
Comment

confusion matrix

# Import confusion matrix
from sklearn.metrics import confusion_matrix, classification_report
# Fit the model to the training data
# Predict the labels of the test data: y_pred

# Generate the confusion matrix and classification report
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
Comment

confusion matrix


matrix_confusion = confusion_matrix(y_test, y_pred)
sns.heatmap(matrix_confusion, square=True, annot=True, cmap='Blues', fmt='d', cbar=Fals
Comment

PREVIOUS NEXT
Code Example
Python :: import yaml python3 
Python :: django url patterns static 
Python :: append data at the end of an excel sheet pandas 
Python :: django datepicker 
Python :: cv2 get framerete video 
Python :: print random integers python 
Python :: how to log errors while debug is false in django 
Python :: train slipt sklearn 
Python :: check for double character in a string python 
Python :: write to csv pandas 
Python :: django get fields data from object model 
Python :: area of trapezium 
Python :: machine learning python 
Python :: python how to find circumference of a circle 
Python :: give columns while reading csv 
Python :: add list to list python 
Python :: square root python 3 
Python :: python beginner projects 
Python :: flask print request headers 
Python :: python check phone number 
Python :: how to know if a key is in a dictionary python 
Python :: pandas count number of rows with value 
Python :: null variable in python 
Python :: how to check a string is palindrome or not in python 
Python :: spotify api python 
Python :: how to shuffle array in python 
Python :: views.py django 
Python :: pandas round floats 
Python :: get weekday from date python 
Python :: pandas sort dataframe by index 
ADD CONTENT
Topic
Content
Source link
Name
9+3 =