df.isnull().values.any()
#return a subset of the dataframe where the column name value == NaN
df.loc[df['column name'].isnull() == True]
df.isnull().sum().sum()
5
> df.isnull().any().any()
True
df['your column name'].isnull().sum()
# to mark NaN column as True
df['your column name'].isnull()
df['your column name'].isnull().values.any()
df.isna().sum().sum()
df.isnull().sum().sum()
import numpy as np
import pandas as pd
val = np.nan
print(pd.isnull(val))
# True
for i, row in df.iterrows():
value = row["Name"]
if pd.isnull(value):
dosomething()
# Check for nan values and store them in dataset named (nan_values)
nan_data = data.isna()
nan_data.head()