pandas replace values in column based on condition
In [41]:
df.loc[df['First Season']>1990,'First Season']=1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 19608941 Chicago Bears 192013572 Green Bay Packers 192113393 Miami Dolphins 19667924 Baltimore Ravens 13265 San Franciso 49ers 19501003
# np.where function works as follows:import numpy as np
# E.g. 1 - Set column values based on if another column is greater than or equal to 50
df['X']= np.where(df['Y']>=50,'yes','no')# E.g. 2 - Replace values over 20000 with 0, otherwise keep original value
df['my_value']= np.where(df.my_value >20000,0, df.my_value)
In [41]:
df.loc[df['First Season']>1990,'First Season']=1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 19608941 Chicago Bears 192013572 Green Bay Packers 192113393 Miami Dolphins 19667924 Baltimore Ravens 1326