Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

train test split sklearn

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
Comment

sklearn train_test_split

 import numpy as np
 from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.33, random_state=42
)
Comment

train_test_split sklearn

from sklearn.model_selection import train_test_split
X = df.drop("target", axis=1)
y = df["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
Comment

train test split sklearn

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
Comment

Splitting training and test data using sklearn

#Let us now split the dataset into train & test
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state=0)
print("x_train ",x_train.shape)
print("x_test ",x_test.shape)
print("y_train ",y_train.shape)
print("y_test ",y_test.shape)
Comment

scikit learn train test split

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
Comment

train dev test split sklearn

train, validate, test = np.split(df.sample(frac=1), [int(.6*len(df)), int(.8*len(df))])
Comment

sklearn train test split

##sklearn train test split

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

#OR Randomly split your whole dataset to your desired percentage, insted of using a  ttarget variable:

training_data = df.sample(frac=0.8, random_state=25) #here we choose 80% as our training sample and for reproduciblity, we use random_state of 42
testing_data = df.drop(training_data.index) # testing sample is 20% of our initial data

Comment

train test split sklearn

import pandas as pd
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

cal_housing = fetch_california_housing()
X = pd.DataFrame(cal_housing.data, columns=cal_housing.feature_names)
y = cal_housing.target

y -= y.mean()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)
Comment

PREVIOUS NEXT
Code Example
Python :: scrapy get inside attribute value 
Python :: apyori 
Python :: user information in python 
Python :: translate french to english 
Python :: pandas rename 
Python :: how to copy file from local to sftp using python 
Python :: delete rows in a table that are present in another table pandas 
Python :: How to check palindrom in python 
Python :: import stock data from yahoo finance 
Python :: validate ip address 
Python :: python help 
Python :: django serve media folder 
Python :: python string find 
Python :: isinstance function python 
Python :: file uploads django 
Python :: select default option django form 
Python :: python endwith 
Python :: pandas count 
Python :: get source code selenium python 
Python :: install json on python 
Python :: df add value at first index 
Python :: installation of uvicorn for fastapi 
Python :: res.send is not a function 
Python :: lambda function in python 
Python :: what is += python 
Python :: Python dir() built-in function 
Python :: dict keys to list in python 
Python :: save to xlsx in python 
Python :: pandas read_excel 
Python :: python password generation 
ADD CONTENT
Topic
Content
Source link
Name
3+3 =