df[df['column name'].isna()]
df[df.isnull().any(axis=1)]
df.isnull().values.any()
df[df['col'].isnull()]
df['your column name'].isnull().sum()
# to mark NaN column as True
df['your column name'].isnull()
df[df['Col2'].isnull()]
df['your column name'].isnull().values.any()
df[df['column name'].isnull()]
df.isnull().sum().sum()
df[df["A_col"].isnull()]
# Check for nan values and store them in dataset named (nan_values)
nan_data = data.isna()
nan_data.head()