Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

train test split sklearn

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
Comment

sklearn train_test_split

 import numpy as np
 from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.33, random_state=42
)
Comment

train_test_split sklearn

from sklearn.model_selection import train_test_split
X = df.drop("target", axis=1)
y = df["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
Comment

train test split sklearn

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
Comment

Splitting training and test data using sklearn

#Let us now split the dataset into train & test
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state=0)
print("x_train ",x_train.shape)
print("x_test ",x_test.shape)
print("y_train ",y_train.shape)
print("y_test ",y_test.shape)
Comment

scikit learn train test split

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
Comment

sklearn train test split

##sklearn train test split

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

#OR Randomly split your whole dataset to your desired percentage, insted of using a  ttarget variable:

training_data = df.sample(frac=0.8, random_state=25) #here we choose 80% as our training sample and for reproduciblity, we use random_state of 42
testing_data = df.drop(training_data.index) # testing sample is 20% of our initial data

Comment

train test split sklearn

import pandas as pd
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

cal_housing = fetch_california_housing()
X = pd.DataFrame(cal_housing.data, columns=cal_housing.feature_names)
y = cal_housing.target

y -= y.mean()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)
Comment

PREVIOUS NEXT
Code Example
Python :: python print green 
Python :: python submit work to redis 
Python :: keyboardinterrupt python 
Python :: pandas remove leading trailing spaces in dataframe 
Python :: fillna method 
Python :: how to sum all the numbers in a list in python 
Python :: reset_index(drop=true) 
Python :: euclidean distance python 3 variables 
Python :: Converting Dataframe from the multi-dimensional list 
Python :: UTC to ISO 8601 with TimeZone information (Python 3): 
Python :: difference between set and tuple in python 
Python :: algorithms for Determine the sum of al digits of n 
Python :: _ variable in python 
Python :: remove dot from number python 
Python :: create a dataframe from dict 
Python :: python look up how many rows in dataframe 
Python :: python copy to clipboard command 
Python :: if statement in one-line for loop python 
Python :: how to reverse a string in python 
Python :: python print value and variable name 
Python :: adding proxy in selenium python 
Python :: np.multiply 
Python :: Triangle Quest 
Python :: how to check substring in python 
Python :: windows error message python 
Python :: flatten tf keras 
Python :: time.strftime("%H:%M:%S") in python 
Python :: Extract bounding boxes OpenCV 
Python :: 3d array into 2d array python 
Python :: bytearray to hex python 
ADD CONTENT
Topic
Content
Source link
Name
8+3 =